CYP724B2 and CYP90B3 function in the early C-22 hydroxylation steps of brassinosteroid biosynthetic pathway in tomato.

نویسندگان

  • Toshiyuki Ohnishi
  • Bunta Watanabe
  • Kanzo Sakata
  • Masaharu Mizutani
چکیده

We characterized a new cytochrome P450 monooxygenase (P450), CYP724B2, from tomato (Lycopersicon esculentum). CYP724B2 showed 42% and 62% amino acid sequence identity with Arabidopsis DWARF4/CYP90B1 and rice DWARF11/CYP724B1 respectively. Functional assay of CYP724B2 heterologously expressed in insect cells revealed that CYP724B2 catalyzes C-22 hydroxylation of campesterol, indicating that CYP724B2 is a C-22 hydroxylase. We also isolated a tomato CYP90B homolog (CYP90B3) and found that CYP90B3 is a C-22 hydroxylase as well. CYP724B2 and CYP90B3 showed substrate specificities similar to each other toward the biosynthetic intermediate compounds from campesterol to campestanol. Campesterol was the best substrate, and (24R)-ergost-4-en-3-one was also metabolized to the C-22 hydroxylated product to some extent. On the other hand, the P450s catalyzed C-22 hydroxylation of (24R)-5alpha-ergostan-3-one and campestanol at a trace level, indicating that the compounds after C-5alpha reduction are poor substrates of CYP724B2 and CYP90B3. In addition, cholesterol (C27 sterol) and sitosterol (C29 sterol) were also converted to C-22 hydroxylated products by the P450s. Furthermore, CYP724B2 and CYP90B3 genes were ubiquitously expressed, and their transcript levels were down-regulated by the exogenous application of brassinolide. These findings strongly suggest that CYP724B2 and CYP90B3 function in the early C-22 hydroxylation steps of brassinosteroid biosynthetic pathway in tomato.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Brassinosteroid-6-oxidases from Arabidopsis and tomato catalyze multiple C-6 oxidations in brassinosteroid biosynthesis.

Brassinosteroids (BRs) are steroidal plant hormones that are essential for growth and development. It has been proposed that BRs are synthesized via two parallel pathways, the early and late C-6 oxidation pathways according to the C-6 oxidation status. The tomato (Lycopersicon esculentum) Dwarf gene encodes a cytochrome P450 that has been shown to catalyze the C-6 oxidation of 6-deoxocastastero...

متن کامل

C-23 hydroxylation by Arabidopsis CYP90C1 and CYP90D1 reveals a novel shortcut in brassinosteroid biosynthesis.

Brassinosteroids (BRs) are biosynthesized from campesterol via several cytochrome P450 (P450)-catalyzed oxidative reactions. We report the functional characterization of two BR-biosynthetic P450s from Arabidopsis thaliana: CYP90C1/ROTUNDIFOLIA3 and CYP90D1. The cyp90c1 cyp90d1 double mutant exhibits the characteristic BR-deficient dwarf phenotype, although the individual mutants do not display ...

متن کامل

Effect of Exogenous Brassinosteroid Application on Grain Yield, some Physiological Traits and Expression of Genes Related to This Hormone Signaling Pathway in Wheat under Drought Stress

To investigate the effect of exogenous brassinosteroid application on grain yield, catalase, chlorophyll content, membrane mtability index and gene expression of some genes involving in brassinosteroid signaling pathway (BES1 and BRI1) under drought stress, a split-split plot on randomized complete block design with three replications was conducted at the experimental field of Seed and Plant Im...

متن کامل

Two Cytochrome P450 Monooxygenases Catalyze Early Hydroxylation Steps in the Potato Steroid Glycoalkaloid Biosynthetic Pathway.

α-Solanine and α-chaconine, steroidal glycoalkaloids (SGAs) found in potato (Solanum tuberosum), are among the best-known secondary metabolites in food crops. At low concentrations in potato tubers, SGAs are distasteful; however, at high concentrations, SGAs are harmful to humans and animals. Here, we show that POTATO GLYCOALKALOID BIOSYNTHESIS1 (PGA1) and PGA2, two genes that encode cytochrome...

متن کامل

Regulation of transcript levels of the Arabidopsis cytochrome p450 genes involved in brassinosteroid biosynthesis.

Cytochrome P450 enzymes of the closely related CYP90 and CYP85 families catalyze essential oxidative reactions in the biosynthesis of brassinosteroid (BR) hormones. Arabidopsis CYP90B1/DWF4 and CYP90A1/CPD are responsible for respective C-22 and C-23 hydroxylation of the steroid side chain and CYP85A1 catalyzes C-6 oxidation of 6-deoxo intermediates, whereas the functions of CYP90C1/ROT3, CYP90...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Bioscience, biotechnology, and biochemistry

دوره 70 9  شماره 

صفحات  -

تاریخ انتشار 2006